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1. Schwarzschild, Kerr and

the strong cosmic censorship conjecture
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Schwarzschild
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The Schwarzschild spacetime (M3+1, g) is a geodesically incomplete

black-hole solution of the Einstein vacuum equations

Ric(g) = 0,

uniquely determined from initial data on a 2-ended asymptotically

flat Cauchy hypersurface Σ. Observers γ who enter the black hole

region subsequently live only for finite proper time.

Such observers γ are in fact “torn apart” by infinite tidal

deformations. Spacetime terminates at a spacelike singularity

across which it is inextendible as a manifold with continuous metric.
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Kerr 0 < ∣a∣ <M
and Reissner–Nordström 0 < Q <M

Schwarzschild sits inside two larger families of solutions (Kerr and

Reissner–Nordström) where the situation changes drastically:
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The part of spacetime determined by initial data is smoothly

extendible to a larger spacetime into which γ enters in finite time.

These extensions are non-unique. What happens to γ?
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Strong cosmic censorship

Conjecture (Strong cosmic censorship, Penrose 1972). For

generic asymptotically flat initial data (Σ, ḡ,K) for the Einstein

vacuum equations

Ric(g) = 0,

the solution spacetime (M, g) determined by initial data cannot be

extended as a suitably regular Lorentzian manifold.

One should think of this conjecture as a statement of global

uniqueness, or, in more colloquial language:

“Generically, the future is uniquely determined by the present”.
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Blue-shift instability (Penrose, 1968)

A possible mechanism for instability of the Cauchy horizon (and

thus for the validity of the conjecture) is the celebrated blue-shift

effect, first pointed out by Penrose:
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Penrose argued that this would cause solutions of the wave

equation 2gψ = 0 (thought of as a model for the linearised Einstein

equations) to blow-up in some way on a fixed Reissner–Nordström

background.
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This suggests Cauchy horizon formation could indeed be an

unstable phenomenon under evolution by the Einstein equations

Ric(g) = 0.
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While linear perturbations as a matter of principle can at worst

blow up at the Cauchy horizon CH+, in the full non-linear theory,

one might expect that the non-linearities would kick in so as for

blow-up to occur before the Cauchy horizon has the chance to form.

This motivates:

Conjecture (Very strong cosmic censorship). For generic vacuum

asymptotically flat initial data (Σ, ḡ,K), the maximal Cauchy

development (M, g) is future inextendible as a Lorentzian manifold

with continuous metric and the singularity can be naturally thought

of as “spacelike”.
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The blue-shift effect in linear theory
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If we look at solutions of the wave equation 2gψ = 0 on Kerr or

Reissner–Nordström arising from compactly supported initial data,

then the solutions decay outside the black hole and a priori this

decay could compete with the blue-shift effect. We have, however:

Theorem 1 (M.D. 2003). In subextremal Reissner–Nordström, for

sufficiently regular solutions of 2ψ = 0 of initially compact support,

then if the spherical mean ψ0 satisfies

∣∂vψ0∣ ≥ cv
−4 (1)

along the event horizon H+, for some constant c > 0 and all

sufficiently large v, then the energy measured by a local observer at

the Cauchy horizon is indeed infinite: E[ψ] =∞.

The lower bound (1) is indeed suggested by approximations and

numerics, cf. Price, Bicak, Gundlach–Price–Pullin, . . .
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The blow-up given by the above theorem, if it indeed occurs is,

however, in a sense weak!

In particular, the amplitude ∣ψ∣ of the solution remains bounded.

Theorem 2 (A. Franzen, 2013). In subextremal

Reissner–Nordström or Kerr with M > Q ≠ 0 or M > ∣a∣ ≠ 0,

respectively, let ψ be a sufficiently regular solution of the wave

equation. Then

∣ψ∣ ≤ C

globally in the black hole interior up to and including CH+, to

which ψ in fact extends continuously.

See upcoming results of Gajic for the extremal case ∣a∣ =M .
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The proof of the above requires an upper bound for the decay rate

of a scalar field along the event horizon H+ of a general

subextremal Kerr metric (0 < ∣a∣ <M).

This follows from very recent decay results of

M.D.–Rodnianski–Shlapentokh-Rothman on the wave

equation on exterior Kerr.
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1. If one “naively” extrapolates the linear behaviour of 2ψ = 0 to

the non-linear Ric(g) = 0, where we identify

ψ ∼ gµν

∂ψ ∼ Γλ
µν

this suggests that the metric may extend continuously to the

Cauchy horizon whereas the Christoffel symbols blow up,

failing to be square integrable, making the Cauchy horizon into a

weak null singularity.

2. On the other hand, according to the “very strong” formulation of

strong cosmic censorship, then the non-linearities of the Einstein

equations should induce a more serious blow-up earlier , forming a

spacelike singularity.

Which of the two scenario holds?
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Fully non-linear toy-models under
spherical symmetry
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The Einstein–Maxwell–(real) scalar field model
under spherical symmetry

The simplest toy model which allows for the study of this problem

in spherical symmetry with a true wave-like degree of freedom is

that of a self-gravitating real-valued scalar field in the presence of a

self-gravitating electromagnetic field.

Rµν −
1

2
gµνR = 8π(T

φ
µν + T

F
µν)

Tφ
µν = ∂µφ∂νφ −

1

2
gµν∂

αφ∂αφ

TF
µν =

1

4π
(gαβFαµFβν −

1

4
gµνF

αβFαβ)

2gψ = 0, ∇µFµν = 0, dF = 0

This generalises a model studied by Christodoulou with F = 0.
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The system had been studied heuristically by Poisson–Israel and

Ori, and then numerically by

Gnedin–Gnedin 1993, Gundlach–Price–Pulin 1994,

Bonano–Droz–Israel–Morsink 1995, Brady–Smith 1995,

Burko 1997

originally with conflicting results.

It turns out, however, that one can in fact mathematically prove

essentially everything about the nonlinear dynamics of this model

in a neighbourhood of the Reissner–Nordström solution.
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Theorem 3 (M.D. 2001, 2003, 2011). Let (M, g, φ, F ) be the

unique solution of the Einstein–Maxwell–real scalar field system

evolving from spherically symmetric asymptotically flat

two-ended data which are sufficiently close to exact subextremal

Reissner–Nordström data with parameters 0 < QRN <MRN .

1. Then, to the future of a Cauchy hypersurface Σ+, the Penrose

diagram of (M, g) is again given by:
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2. Moreover, the metric extends continuously beyond CH+ to a

strictly larger Lorentzian manifold (M̃, g̃), making CH+ a bifurcate

null hypersurface in M̃. All future-incomplete causal geodesics in

M extend to enter M̃. The scalar field φ extends to a continuous

function on M̃.
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3. In addition, if φ satisfies a pointwise lower bound on both

components of the horizon H+ (cf. Theorem 1), then the Hawking

mass diverges on all of CH+. In particular, (M, g) is future

inextendible as a spacetime with square-integrable Christoffel

symbols.
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Note that as in the proof of Theorem 2, an important ingredient in

the proof of the above theorem are upper bounds on φ on H+,

proven in M.D.–Rodnianski 2003.
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The above theorem shows that in the context of the

spherically symmetric toy-model, “naive” extrapolation of linear

theory is indeed correct:

The blue-shift instability is not sufficiently strong to destroy the

spacetime earlier in a spacelike singularity, but does give rise to a

weak null singularity at the Cauchy horizon, across which the

metric is however continuously extendibile.

Thus, in “toy-land”, very strong cosmic censorship is false, but a

weaker formulation requiring only inextendibility in the class of

metrics with locally square integrable Christoffel symbols (a

formulation due to Christodoulou) may still be true.

Is this indicative of the behaviour of the actual vacuum

equations without symmetry, or is this just an artifact of

the toy model?
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Leaving toys behind:

Null singularities for the vacuum Einstein
equations without symmetry
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The first question one might ask is, can one construct any

examples of weak null singularities for the vacuum?

This has recently been resolved in a remarkable new result of Luk.

Luk showed that if one “puts” in the expected singular profile of

the initial shear χ̂ of a light cone (with affine parameter u) singular

as u→ 0

∣χ̂∣ ∼ ∣ log(−u)∣−p∣u∣−1, p > 1

then, one can solve a characteristic initial value problem for the

vacuum equations in a large enough region so as for this behaviour

to propagate as a weak null singular boundary of spacetime.

No symmetry is required on initial data!
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Here is the formal statement:

Theorem 4 (Luk). Let us be given characteristic data for the

Einstein vacuum equations Ric(g) = 0 defined on a bifurcate null

hypersurface N out ∪N in, where N out is parameterised by affine

parameter u ∈ [u∗, 0), and the data are regular on N in while

singular on N out, according to

∣χ̂∣ ∼ ∣ log(−u)∣−p∣u∣−1, (2)

for appropriate p > 1.

Then the solution exists in a region foliated by a double null

foliation with level sets u, ū covering the region u∗ ≤ u < 0,

u∗ ≤ u < 0 for u∗ as above and sufficiently small u∗, and the bound

(2) propagates. The spacetime is continuously extendible beyond

u = 0, but the Christoffel symbols fail to be square integrable in this

extension.
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The above theorem tell us that weak null singularities for the

vacuum are a reality!

It does not yet tell us, however, that null boundaries form inside

generic black holes.

Combining Luk’s methods with the intuition and methods derived

from the spherically symmetric toy-model, we have recently

obtained the following definitive result concerning vacuum black

hole interiors without symmetry, which I will announce here:
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Here is the formal statement:

Theorem 5 (M.D.–Luk, to appear). Let us be given

characteristic initial data for the Einstein vacuum equations, with

no symmetry assumed , defined on two intersecting future-affine

complete null hypersurfaces H+A ∪H
+

B, such that, along each, the

data are near and in fact asymptote to (at a sufficiently fast inverse

polynomial rate) event-horizon data of a subextremal Kerr with

a ≠ 0.

Then the solution exists up to a bifurcate Cauchy horizon (just

as in Kerr!) beyond which the metric extends continuously (but at

which the Christoffel symbols may blow up, failing even to be square

integrable).
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In simpler language, what is proven is the following:

If the exterior regions of the Kerr spacetime are indeed dynamically

stable (as is universally believed–but not yet shown!), then so is

the entirety of its Cauchy horizon as to its null character and

the continuous extendibility of the metric beyond it.

The result still would allow the Christoffel symbols to blow up

failing even to be square integrable at the Cauchy horizon, in which

case the horizon would represent a weak null singularity.
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More generally, the above theorem in fact implies the following:

Any dynamic spacetime settling down to Kerr in its exterior

region at inverse polynomial rates will necessarily have a piece of

non-empty Cauchy horizon in its interior, possibly singular,

but across which the metric still extends continuously.
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What is left to be done?
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Conjecture 1 (Stability of the Kerr exterior). Small perturbations

of Kerr initial data on a Cauchy hypersurface indeed form an event

horizon outside of which the solution settles down to a nearby Kerr

solution at a sufficiently fast inverse polynomial rate.

If the above conjecture is true, then the statement of our theorem

applies to all spacetimes arising from sufficiently small

perturbations of Kerr initial data on a spacelike hypersurface,

showing that such spacetimes can be extended as a continuous

Lorentzian metric across a bifurcate Cauchy horizon.

In particular, a corollary of the above and our theorem would be

Corollary. Very strong cosmic censorship is false.
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Conjecture 2. For generic initial data sufficiently close to Kerr,

the resulting Cauchy horizon is indeed (globally) singular in the

sense that any C0 extension M̃ as above will fail to have L2

Christoffel symbols in a neighbourhood of any point of ∂M.

This corresponds to the inextendibility statement which was

conditionally shown in the spherically symmetric toy model.

Though not sufficient to show that macroscopic observers are “torn

apart” in the sense of a naive Jacobi field calculation, this would

ensure that the boundary of spacetime is singular enough so that

one cannot extend the spacetime as a weak solution to the Einstein

equations.

In particular, a corollary of the above and our theorem would be

Corollary. Christodoulou’s formulation of strong cosmic

censorship is true in a neighbourhood of the Kerr family .
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What is the global picture when one does not begin with initial

data sufficiently close to Kerr data?

Is there, in addition to the null component, in general also

a spacelike portion of the singularity?

Or does this null piece necessarily “close up” before such

a spacelike component can occur?
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